TRIFLUOROMETHYLISOCYANIDE, PREPARATION, REACTIVITY AND LIGAND BEHAVIOUR

Dieter Lentz

Institut für Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstr. 34-36, D-1000 Berlin 33 (F.R.G.)

Trifluoromethylisocyanide, CF3NC, can be prepared by elimination of halogene from $CF_3N=CX_2$ (X=Cl, Br) with magnesium in THF. Both conformers of $\mathrm{CF_{3}N} = \mathrm{CHF}$, $\mathrm{CF_{3}N} = \mathrm{CHC1}$ and $\mathrm{CF_{3}N} = \mathrm{CHBr}$ are formed when the hydrogen halides are reacted with isocyanide. The equilibrium of the Z and E conformer of these compounds has been studied by variable temperature nmr measurements. The N-trifluoromethylhalogenemethanimenes dimerize slowly forming the corresponding aminomethanimines $CF_3N=C(H)N(CF_3)(CX_2H)$. $\mathrm{CF_3NC}$ is a strong $\mathcal{U} ext{-accepting ligand}$. This has been demonstrated by the synthesis of several transition metal complexes like $Ni(CNCF_3)_A$, ${\rm Ni_2Cp_2(CNCF_3)_2}$, ${\rm CpCo(CNCF_3)_2}$ and ${\rm CpCoI_2(CNCF_3)}$. In competition with the carbonyl-ligand CF3NC seems to prefer the bridging position. This is demonstrated in $Fe_3(\mu\text{-CNCF}_3)(CO)_{11}$, which contains a stable trifluoromethylisocyanide bridge, both in the solid state and in solution. Reaction of $Cp(CO)_2Mo \in Mo(CO)_2Cp$ with CF_3NC in the molar ratio 1:1 leads to formation of $\mathrm{Mo_2Cp_2(CO)_4(y^2-\mu-CNCF_3)}$. According to the spectroscopic data the bridging $\operatorname{CF}_{\operatorname{Q}}\operatorname{NC}$ ligand functions as a four electron donor. If an excess of CF_3NC is used $[MoCp(CO)_2(\mu-CNCF_3)]_2$ can be isolated as an unstable product. $[{
m MoCp(CO)}_2(\mu{
m -CNCF}_3)]_2$ undergoes cleavage of the metalmetal-bond and carbon-carbon-bond formation between the two coordinated isocyanide ligands. The new $F_3CN=C=C=NCF_3$ ligand bridges two $MoCp(CO)_2$ fragments.